

RICCAR PURCHARMENT Market Market Market	Webinar Series	
• Module 1:	RICCAR regional climate modelling and hydrological modelling datasets: An introduction	
Module 2:	Viewing NetCDF regional climate modeling datasets in GIS	
Module 3:	Extracting tabular data from NetCDF climate files for use in other models and applications	
✓ Module 4:	Creating a regional climate model ensemble using GIS and extreme events indices	
Module 5:	 Module 5: Accessing global and regional climate datasets and platforms 	
 Module 6: 	RICCAR integrated vulnerability assessment methodology	
		2

Driving CMIP5 GCMs us		sed for R	ICCAR
Model Name	Modelling Centre	Country	GCM Resolutior (Ion x lat)
CNRM-CM5	Européen de Recherche et Formation Avancée en Calcul Scientifique (CERFACS)	France	1.41° × 1.40°
EC-EARTH	EC-EARTH consortium published at Irish Centre for High-End Computing	Netherlands / Ireland	1.13° × 1.13°
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory	USA	2.50° × 2.02°

- Maps show differences in modelling outputs based on 3 different driving GCMs (CNRM-CM5, EC-EARTH, and GFDL-ESM2M) downscaled using the same RCM (RCA4).
- Differences are most apparent in eastern North Africa and Sub-Saharan Africa
- More information is found in the RICCAR Technical Note from the Swedish Meteorological and Hydrological Institute (SMHI). Regional Climate Modelling and Regional Hydrological Modelling Applications in the Arab Region.

- Maps show differences in modelling outputs based on 3 different driving GCMs (CNRM-CM5, EC-EARTH, and GFDL-ESM2M) downscaled using the same RCM (RCA4).
- Differences are most apparent in Sub-Saharan Africa
- More information is found in the RICCAR Technical Note from the Swedish Meteorological and Hydrological Institute (SMHI). Regional Climate Modelling and Regional Hydrological Modelling Applications in the Arab Region.

- Maps show differences in modelling outputs based on 3 different driving GCMs (CNRM-CM5, EC-EARTH, and GFDL-ESM2M) downscaled using the same RCM (RCA4).
- Differences are most apparent in Mashreq and western Sahel.
- More information is found in the RICCAR Technical Note from the Swedish Meteorological and Hydrological Institute (SMHI). Regional Climate Modelling and Regional Hydrological Modelling Applications in the Arab Region.

- Maps show differences in modelling outputs based on 3 different driving GCMs (CNRM-CM5, EC-EARTH, and GFDL-ESM2M) downscaled using the same RCM (RCA4).
- Differences are most apparent in the Horn of Africa
- More information is found in the RICCAR Technical Note from the Swedish Meteorological and Hydrological Institute (SMHI). Regional Climate Modelling and Regional Hydrological Modelling Applications in the Arab Region.

• Uncertainties in modelling outputs can include scenario uncertainties (RCPs), internal climate variabilities, and differing model assumptions.

- RICCAR climate modelling output ensembles are based on 3 members as shown.
- RICCAR ensembles represent a 20-year mean. Results can either be annual or seasonal.

- Mashreq Domain modelling outputs expected starting in early 2021
- Driving GCMs are to be determined. One of them will be EC-EARTH.
- RCM to be used will be ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) developed by CNRM. ALADIN is currently used by institutes from the ALADIN-HIRLAM consortium under the name HCLIM-ALADIN (SMHI).

- Multiple GCMs and RCMs can be used. For example for the MNA (Arab) Domain, there are raw RCM output projections available from CORDEX/ESGF that include (shown by GCM/RCM): (a) CNRM-CM5/RCA4, (b) EC-EARTH/RCA4, (c) GFDL-ESM2M/RCA4, (d) MPI-ESM-MR/RegCM4.3, and (e) HadGEM2-ES/RegCM4.3. All 5 modelling outputs can be used to create an ensemble.
- Spatial resolution of all ensemble members should be the same (i.e. all from 50 km / 0.44°)
- Temporal resolution of all ensemble members should be the same (i.e. all daily or all monthly)
- The modelling domain should be the same (i.e. all from Arab Domain) so that boundary conditions are identical
- Do not mix bias-corrected data with raw RCM outputs (not bias-corrected)

- Ensembles for RICCAR are based on the mean output of 3 modelling outputs for 4 different 20-year time periods for 2 different RCP scenarios.
- Available in raster format from the RICCAR Regional Knowledge Hub data portal

RICCAR Desired to the second		Creating an en	semble in GIS	
1. Ex	tract each ster time slice	Make NetCDF Raster Layer Input netCDF File Variable	-	×
a.	Make NetCDF Raster Layer	Chimersion Comersion Dutput Raster Layer Band Dimension (optional) Dimension Values (optional)		
		Dimension	Value	+ × 1
		Value Selection Method (optional) BY_VALUE	OK Cancel Environments	Show Help >>
		L		16

- Make NetCDF Raster Layer was discussed during webinar module 2.
- RICCAR Training Manual on the Use of GIS to Analyse Climate Change Data Section 3.2.2.

• After selecting time as the Band Dimension, the Dimension Values field will turn blank.

• Save layer file in user-defined location.

cource حصائص حظ هذه الطبقة كملف (دفظ تعريف cource) التعادي الطبقة كملف (دفظ تعريف السيانات (الطبقة فريس البيانات (الطبقة فريس البيانات (الطبقة فريس البيانات (الطبقة فريس البيانات الطبقة فريس البيانات (الطبقة فريس البيانات ال

- Using the NetCDF_time_slice_to_Raster will automatically export each time slice from the NetCDF layer file as a single raster (.tif).
- Save the tool in a user-defined location.

 NetCDF Time Slice to Raster tool may be located in a subdirectory under the userdefined location (NetCDF_time_slice_export.gdb > NetCDF_Time_Slice_Export > NetCDF_time_slice_export

- Select the Input NetCDF layer as saved during step 1.c.
- Once completed, select OK.

RICCAR Biogram	Cre	ating an ensemble in GIS	
1. Ex	tract each raster tin	ne slice	
a.	Make NetCDF Raster L	ayer	
b.	Open Layer Properties Dimension	and select time for the Band	
С.	Save as Layer File		
d.	Download and use Net	CDF Time Slice to Raster tool	
e.	Open tool from user- defined location in ArcCatalog	NetCDF_time_slice_export Executing NetCDF_time_slice_export	Cancel
f.	Enter the NetCDF layer and user- defined Output	Close this dialog when completed successfully Band_34.tif exported successfully Band_35.tif exported successfully Para 26 tif exported successfully	<< Details
	Folder	Band_37.tif exported successfully Band_39.tif exported successfully	
g.	Execute tool	Band_39.tif exported successfully Band_40.tif exported successfully Band_41.tif exported successfully Band_42.tif exported successfully Band_43.tif exported successfully	• 23

- When executing NetCDF Time Slice to Raster tool, the .tif files will automatically named Band_(number). The numbers will be in chronological order from 1 to n, where n is the number of time slices. For daily precipitation and temperature, each RICCAR NetCDF will have 365 time slices (or 366 during leap years), representing each day of the year. For the extreme climate indices, there are 150 time slices, one for each year (1951-2100).
- Common error: If the NetCDF Time Slice to Raster output is only one file (Band_1.tif), it means that the user did not select time as the Band Dimension (step 1.b) before saving as layer file (Step 1.c).
- Note that tool execution may take several minutes depending on computer speed.

- Cell Statistics tool is located under Spatial Analyst Tools > Local
- Tool requires activation of the Spatial Analyst extension, available in ArcMap under Customize > Extensions

• Select raster files

t Raster (.tif) _1 to Band_31 32 to Band_59 60 to Band_90		Days 1 Jan - 31 Jan	Output Raster (.tif) Band 1 to Band 31
1 to Band_31 32 to Band_59 60 to Band_90		1 Jan - 31 Jan	Band 1 to Band 31
32 to Band_59		1 5 1 00 5 1	Dunu_1 to Dunu_01
60 to Band 90		1 Feb – 29 Feb	Band_32 to Band_60
oo to bana_90		1 Mar - 31 Mar	Band_61 to Band_91
1 to Band_120		1 Apr – 30 Apr	Band_92 to Band_121
21 to Band_151		1 May – 31 May	Band_122 to Band_152
52 to Band_181		1 Jun – 30 Jun	Band_153 to Band_182
82 to Band_212		1 Jul – 31 Jul	Band_183 to Band_213
13 to Band_243		1 Aug - 31 Aug	Band_214 to Band_244
44 to Band_273		1 Sep – 30 Sep	Band_245 to Band_274
74 to Band_304		1 Oct - 31 Oct	Band_275 to Band_305
		1 Nov – 30 Nov	Band_306 to Band_335
05 to Band_334		1 Dec - 31 Dec	Band_336 to Band_366
	05 to Band_334 35 to Band_365	05 to Band_334 35 to Band_365	05 to Band_334 1 Nov - 30 Nov 35 to Band_365 1 Dec - 31 Dec

• The table on the left is for normal calendar years and the table on the right is for leap years (with 29 February, i.e. 2020, 2024, 2028)

- The raster files not listed in chronological order
- Because of this, it can be tedious to select appropriate raster bands (i.e. for January)

- Be sure to select complete raster file. There will be 5 files for each raster (.tif, .tif.aux.xml, .tif.ovr, .tif.xml, and .tfw).
- After this is completed, may get warning message indicating "Invalid drop item/One or more dropped items were invalid and will not be added to the control". Disregard this message. It is because all 5 files per raster were selected, but all are not necessary to execute the tool.

• Output raster file name is user-defined

- Mean is the default overlay statistic
- Selecting mean as the overlay statistic for temperature will calculate the average temperature of all the raster selected.
- If mean is selected as the overlay statistic for precipitation, the result will report the average precipitation in mm/day (because the NetCDF file and rasters are daily data)

RICCAR Build for the statement for convert strategies	Cell Statistics: Overlay Statistic	
	For precipitation, more common to report units in mm/month or mm/year	
Overlay statistic (optio MEAN MAJORITY MAJORITY MADUM MEDIAN MINIMUM MINIMUM MINIMUM MINIMUM MINIORITY RANGE STD SUM VARIETY	nal)	\ \

• Select sum as the overlay statistic to sum monthly data or yearly data

Cell Statistics		- 0
Input rasters or constant value	25	
		_
E: RCM Climate Data Ense	embles/Precipitation RCP8.5 (2046-2065)/CNRM-CM5/2049/apr_sum	^ +
E: WCM Climate Data Ense	emples/precipitation KCP8.5 (2046-2065) (CNRM-CM5)2016 (aug_sum	×
E:\RCM Climate Data Ense	embles/Precipitation RCP8.5 (2046-2005)/CNRM-CM5/2046/feb eum	
E: RCM Climate Data Ense	embles/Precipitation RCP8.5 (2046-2065)/CNRM-CM5/2046/jan_sum	1
E: RCM Climate Data Ense	embles/Precipitation RCP8, 5 (2046-2065)/CNRM-CM5/2046/jul sum	
E: RCM Climate Data Ense	embles Precipitation RCP8.5 (2046-2065) \CNRM-CM5\2046\iun_sum	+
E: RCM Climate Data Ense	embles Precipitation RCP8.5 (2046-2065) \CNRM-CM5\2041 \mar_sum	
Output raster		
E:\RCM Climate Data Ensembl	les\Precipitation RCP8.5 (2046-2065)\CNRM-CM5\2046\2046	
Ourselous statistic (satistical)		
MEAN		
HEAN		÷
Ignore NoData in calculatio	ons (optional)	

- To find the annual (or seasonal) average of monthly rainfall, select the monthly values as the input rasters and mean as the overlay statistic
- If reporting total yearly rainfall, this was completed in previous step, using the sum as the overlay statistic, selecting all 365 (or 366) raster files.

- Note that October-March is calculated as January-March 2030 and October-December 2030.
- Result will be as shown when completed. (Adding color scheme and the background map is optional.) Results should range from 0 to 119.72 mm/month.
- Results for each month: Oct: 0 197.8; Nov: 0 135.28; Dec: 0 354.92; Jan: 0 47.01; Feb: 0 167.81; Mar: 128.43 mm/month

- Models shown are the RICCAR GCMs/RCM. Note that ensembles can be composed of any GCM/RCM combination as long as the domain, spatial resolution, RCP scenario, and bias-corrected (or not bias-corrected) are the same.
- Smaller circles represent the mean precipitation (or temperature) for one year per GCM/RCM.

- Ensemble projections are frequently reported as a change in value to quantify climate change, compared to a reference period.
- Reference period used for RICCAR is 1986-2005, defined by IPCC AR5.
- Figure shown is from the RICCAR Arab Climate Change Assessment Report Main Report, Figure 21, RCP8.5 showing mean change in annual precipitation

- To compare projected values to the reference period, use the Raster Calculator, found under Spatial Analyst > Map Algebra.
- Note that the Spatial Analyst extension must be active.

Ricco Ricco Bediate fore Card Days I paid that	AR Martin and References	Creating an ensemble in GIS
1.	Extract each raster time slice	Map Agebra expression Layers and variables Precipitation 3330 (2021-20-44) RCP8.5 Precipitation reference period RCP8.5 7 8 9 / == 1 = 8 Precipitation reference period RCP8.5
2.	Calculate annual (or seasonal) projections	4 5 6 > > I Math 1 2 3 - < - Abs 0 . + () ~ Exp v Precipitation 2030 (2021-2040) RCP8.5" - "Precipitation reference period RCP8.5"
3.	Compare to reference period	
		OK Cancel Environments Show Help >> 40

- Note that raster files must be added to ArcMap project to use in the Raster Calculator (shown in Layers and variables).
- Subtract the reference period value from the projected value to calculate the change.
- Recommended to provided a user-defined Output Raster rather than leave the default name to help facilitate future access of the raster file. Note that ArcMap often limits the number of characters in the file name (shown as "change" in the example).

Cân So	RICCAR Riccare	Extren	ne clima	ate indices
	ID	Indicator Name	ID	Indicator Name
	FD0	Frost days	WSDI	Warm spell duration indicator
	SU25	Summer days	CSDI	Cold spell duration indicator
	ID0	Ice days	DTR	Diurnal temperature range
	TR20	Tropical nights	RX1day	Max 1-day precipitation amount
	GSL	Growing season length	Rx5day	Max 5-day precipitation amount
	TXx	Max Tmax	SDII	Simple daily intensity index
	TNx	Max Tmin	R10	Number of heavy precipitation days
	TXn	Min Tmax	R20	Number of very heavy precipitation days
	TNn	Min Tmin	Rnn	Number of days about nn mm
	TN10p	Cool nights	CDD	Consecutive dry days
	TX10p	Cool days	CWD	Consecutive wet days
	TN90p	Warm nights	R95p	Very wet days
	TX90n	Warm days	R99p	Extremely wet days
			PRCPTOT	Annual total wet-day precipitation
L				41

- 27 Core Indices defined by ETCCDI (Expert Team on Climate Change Detection and Indices)
- The 7 indices highlighted were used for RICCAR, plus SU35 and SU40. Note that the indicator name may differ slightly.
- Definitions and units of measurement:
 - FD0 Annual count when TN (daily minimum) < 0 °C (days)
 - SU25 Annual count when TX (daily maximum) > 25 °C (days)
 - ID0 Annual count when TX (daily maximum) < 0 °C (days)
 - TR20 Annual count when TN (daily minimum) > 20 °C (days)
 - GSL Annual count (1 Jan to 31 Dec in northern hemisphere, 1 Jul to 30 Jun in southern hemisphere) between first span of at least 6 days with daily mean temperature > 5 °C and first span after 1 Jul (1 Jan in southern hemisphere) of 6 days with daily mean temperature < 5 °C (days)
 - TXx Monthly maximum value of daily maximum temperature (°C)
 - TNx Monthly maximum value of daily minimum temperature (°C)
 - TXn Monthly minimum value of daily maximum temperature (°C)
 - TNn Monthly minimum value of daily minimum temperature (°C)
 - TN10p Percentage of days when minimum temperature < 10th percentile (days)

- TX10p Percentage of days when maximum temperature < 10th percentile (days)
- TN90p Percentage of days when minimum temperature > 90th percentile (days)
- TX90p Percentage of days when maximum temperature > 90th percentile (days)
- WDSI Annual count of days with at least 6 consecutive days when maximum temperature > 90th percentile (days)
- CSDI Annual count of days with at least 6 consecutive days when minimum temperature > 10th percentile (days0
- DTR Monthly mean difference between daily maximum and daily minimum temperature (°C)
- RX1day Monthly maximum 1-day precipitation (mm)
- RX5day Monthly maximum consecutive 5-day precipitation (mm)
- SDII Annual total precipitation divided by the number of wet days (precipitation ≥ 1.0 mm) (mm/days)
- R10 Annual count when precipitation \geq 10 mm (days)
- R20 Annual count when precipitation ≥ 20 mm (days)
- Rnn Annual count when precipitation ≥ nn mm (nn is user-defined threshold) (days)
- CDD Maximum number of consecutive days with precipitation < 1 mm (days)
- CWD Maximum number of consecutivey days with precipitation \geq 1 mm (days)
- R95p Annual total precipitation when daily precipitation > 95th percentile (mm)
- R99p Annual total precipitation when daily precipitation > 99th percentile (mm)
- PRCPTOT Annual total precipitation in wet days (precipitation \geq 1 mm) (mm)
- Can calculate indices from NetCDF files using CDO or from time series data (.txt) for single point location using RClimDex (<u>http://etccdi.pacificclimate.org/software.shtml</u>)

شكراً